Use of a novel impermeable biotinylated photolabeling reagent to assess insulin- and hypoxia-stimulated cell surface GLUT4 content in skeletal muscle from type 2 diabetic patients.
نویسندگان
چکیده
Cell surface GLUT4 levels in skeletal muscle from nine type 2 diabetic subjects and nine healthy control subjects have been assessed by a new technique that involves the use of a biotinylated photo-affinity label. A profound impairment in GLUT4 translocation to the skeletal muscle cell surface in response to insulin was observed in type 2 diabetic patients. Levels of insulin-stimulated cell surface GLUT4 above basal in type 2 diabetic patients were only approximately 10% of those observed in healthy subjects. The magnitude of the defect in GLUT4 translocation in type 2 diabetic patients was greater than that observed for glucose transport activity, which was approximately 50% of that in healthy subjects. Reduced GLUT4 translocation is therefore a major contributor to the impaired glucose transport activity in skeletal muscle from type 2 diabetic subjects. When a marked impairment in GLUT4 translocation occurs, the contribution of other transporters to transport activity becomes apparent. In response to hypoxia, marked reductions in skeletal muscle cell surface GLUT4 levels were also observed in type 2 diabetic patients. Therefore, a defect in a common late stage in signal transduction and/or a direct impairment in the GLUT4 translocation process accounts for reduced glucose transport in type 2 diabetic patients.
منابع مشابه
Infusion of a biotinylated bis-glucose photolabel: a new method to quantify cell surface GLUT4 in the intact mouse heart.
Glucose uptake in the heart is mediated by specific glucose transporters (GLUTs) present on cardiomyocyte cell surface membranes. Metabolic stress and insulin both increase glucose transport by stimulating the translocation of glucose transporters from intracellular storage vesicles to the cell surface. Isolated perfused transgenic mouse hearts are commonly used to investigate the molecular reg...
متن کاملRegulation of cell surface GLUT4 in skeletal muscle of transgenic mice.
Marked overexpression of the glucose transporter GLUT4 in skeletal muscle membrane fractions of GLUT4 transgenic (TG) mice is accompanied by disproportionately small increases in basal and insulin-stimulated glucose transport activity. Thus we have assessed cell surface GLUT4 by photolabelling with the membrane-impermeant reagent 2-N-[4-(1-azi-2,2,2-trifluoroethyl)benzoyl]-1, 3-bis(D-mannos-4-y...
متن کامل5-amino-imidazole carboxamide riboside increases glucose transport and cell-surface GLUT4 content in skeletal muscle from subjects with type 2 diabetes.
AMP-activated protein kinase (AMPK) activation by AICAR (5-amino-imidazole carboxamide riboside) is correlated with increased glucose transport in rodent skeletal muscle via an insulin-independent pathway. We determined in vitro effects of insulin and/or AICAR exposure on glucose transport and cell-surface GLUT4 content in skeletal muscle from nondiabetic men and men with type 2 diabetes. AICAR...
متن کاملInnovative Methodology Infusion of a biotinylated bis-glucose photolabel: a new method to quantify cell surface GLUT4 in the intact mouse heart
Miller EJ, Li J, Sinusas KM, Holman GD, Young LH. Infusion of a biotinylated bis-glucose photolabel: a new method to quantify cell surface GLUT4 in the intact mouse heart. Am J Physiol Endocrinol Metab 292: E1922–E1928, 2007. First published March 6, 2007; doi:10.1152/ajpendo.00170.2006.—Glucose uptake in the heart is mediated by specific glucose transporters (GLUTs) present on cardiomyocyte ce...
متن کاملGLUT4 overexpression in db/db mice dose-dependently ameliorates diabetes but is not a lifelong cure.
We previously reported that overexpression of GLUT4 in lean, nondiabetic C57BL/KsJ-lepr(db/+) (db/+) mice resulted in improved glucose tolerance associated with increased basal and insulin-stimulated glucose transport in isolated skeletal muscle. We used the diabetic (db/db) litter mates of these mice to examine the effects of GLUT4 overexpression on in vivo glucose utilization and on in vitro ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Diabetes
دوره 49 4 شماره
صفحات -
تاریخ انتشار 2000